Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(32): 38367-38380, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549199

RESUMO

Metal-organic frameworks (MOFs) have found increasing applications in the biomedical field due to their unique properties and high modularity. Although the limited stability of MOFs in biological environments is increasingly recognized, analytical techniques have not yet been harnessed to their full potential to assess the biological fate of MOFs. Here, we investigate the environment-dependent biochemical transformations of widely researched nanosized MOFs (nMOFs) under conditions relevant to their medical application. We assess the chemical stability of antimicrobial zinc-based drug delivery nMOFs (Zn-ZIF-8 and Zn-ZIF-8:Ce) and radio-enhancer candidate nMOFs (Hf-DBA, Ti-MIL-125, and TiZr-PCN-415) containing biologically nonessential group IV metal ions. We reveal that even a moderate decrease in pH to values encountered in lysosomes (pH 4.5-5) leads to significant dissolution of ZIF-8 and partial dissolution of Ti-MIL-125, whereas no substantial dissolution was observed for TiZr-PCN-415 and Hf-DBA nMOFs. Exposure to phosphate-rich buffers led to phosphate incorporation in all nMOFs, resulting in amorphization and morphological changes. Interestingly, long-term cell culture studies revealed that nMOF (bio)transformations of, e.g., Ti-MIL-125 were cellular compartment-dependent and that the phosphate content in the nMOF varied significantly between nMOFs localized in lysosomes and those in the cytoplasm. These results illustrate the delicate nature and environment-dependent properties of nMOFs across all stages of their life cycle, including storage, formulation, and application, and the need for in-depth analyses of biotransformations for an improved understanding of structure-function relationships. The findings encourage the considerate choice of suspension buffers for MOFs because these media may lead to significant material alterations prior to application.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos , Metais/química , Compostos Orgânicos , Biotransformação
2.
ACS Nanosci Au ; 3(1): 46-57, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36820094

RESUMO

Metallic nanoparticles are increasingly present in our environment, raising concerns on their interactions with living organisms and potential toxicity. Indeed, metallic nanoparticles release metal ions that can be toxic, bioessential, therapeutically active, or combine several of these features. However, human cell responses to different metallic nanoparticles and ions have rarely been compared so far. We propose here a meta-analysis of the transcriptomic responses of human cells to nanoparticles and ions of various metals (titanium, iron, copper, zinc, silver, cadmium, platinum, gold), in order to identify the commonalities and differences between cell responses to these compounds. This analysis revealed that the chemical properties of metals are more important than their known biological functions (i.e., essential metals, toxicity) in governing the cell transcriptome. Particularly, we evidence that the response to nanoparticles is dominated by the response to the ions they contain, and depend on the nanoparticles' solubility. The formulation as nanoparticles impacts the cell response at lower intensity than the released ions, by altering genes related to vesicle intracellular transport and the cytoskeleton. Moreover, we put into light that several metals (i.e., copper, zinc, silver, cadmium, and gold) trigger a common cell response governed by metallothioneins, which coexist with singular signatures that are specific to a given element.

3.
Small Methods ; 7(2): e2201061, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572638

RESUMO

Imaging of iron-based nanoparticles (NPs) remains challenging because of the presence of endogenous iron in tissues that is difficult to distinguish from exogenous iron originating from the NPs. Here, an analytical cascade for characterizing the biodistribution of biomedically relevant iron-based NPs from the organ scale to the cellular and subcellular scales is introduced. The biodistribution on an organ level is assessed by elemental analysis and quantification of magnetic iron by electron paramagnetic resonance, which allowed differentiation of exogenous and endogenous iron. Complementary to these bulk analysis techniques, correlative whole-slide optical and electron microscopy provided spatially resolved insight into the biodistribution of endo- and exogenous iron accumulation in macrophages, with single-cell and single-particle resolution, revealing coaccumulation of iron NPs with endogenous iron in splenic macrophages. Subsequent transmission electron microscopy revealed two types of morphologically distinct iron-containing structures (exogenous nanoparticles and endogenous ferritin) within membrane-bound vesicles in the cytoplasm, hinting at an attempt of splenic macrophages to extract and recycle iron from exogenous nanoparticles. Overall, this strategy enables the distinction of endo- and exogenous iron across scales (from cm to nm, based on the analysis of thousands of cells) and illustrates distribution on organ, cell, and organelle levels.


Assuntos
Ferro , Macrófagos , Distribuição Tecidual , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
4.
Nanoscale ; 14(42): 15760-15771, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36239706

RESUMO

Persistent luminescence nanoparticles (PLNPs) are attracting growing interest for non-invasive optical imaging of tissues with a high signal to noise ratio. PLNPs can emit a persistent luminescence signal through the tissue transparency window for several minutes, after UV light excitation before systemic administration or directly in vivo through visible irradiation, allowing us to get rid of the autofluorescence signal of tissues. PLNPs constitute a promising alternative to the commercially available optical near infrared probes thanks to their versatile functionalization capabilities for improvement of the circulation time in the blood stream. Nevertheless, while biodistribution for a short time is well known, the long-term fate and toxicity of the PLNP's inorganic core after injection have not been dealt with in depth. Here we extend the current knowledge on ZnGa1.995O4Cr0.005 NPs (or ZGO) with a one-year follow-up of their fate after a single systemic administration in mice. We investigated the organ tissue uptake of ZGO with two different coatings and determined their intracellular processing up to one year after injection. The biopersistence of ZGO was assessed, with a long-term retention, quantified by ICP-MS, mostly in the liver and spleen, parallel with a loss of their luminescence properties. The analysis of the toxicity related to combining an animal's weight, key hematological and metabolic markers, histological observations of liver tissues and quantification of the expression of 31 genes linked to different metabolic reactions did not reveal any signs of noxiousness, from the macro scale to the molecular level. Therefore, the ZGO imaging probe has been proven to be a safe and relevant candidate for preclinical studies, allowing its long term use without any in vivo disturbance of the general metabolism.


Assuntos
Luminescência , Nanopartículas , Camundongos , Animais , Distribuição Tecidual , Seguimentos , Nanopartículas/toxicidade , Imagem Óptica
5.
NMR Biomed ; 35(6): e4690, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34994020

RESUMO

Microscopic magnetic field inhomogeneities caused by iron deposition or tissue-air interfaces may result in rapid decay of transverse magnetization in MRI. The aim of this study is to detect and quantify the distribution of iron-based nanoparticles in mouse models by applying ultrashort-echo-time (UTE) sequences in tissues exhibiting extremely fast transverse relaxation. In 24 C57BL/6 mice (two controls), suspensions containing either non-oxidic Fe or AuFeOx nanoparticles were injected into the tail vein at two doses (200 µg and 600 µg per mouse). Mice underwent MRI using a UTE sequence at 4.7 T field strength with five different echo times between 100 µs and 5000 µs. Transverse relaxation times T2 * were computed for the lung, liver, and spleen by mono-exponential fitting. In UTE imaging, the MRI signal could reliably be detected even in liver parenchyma exhibiting the highest deposition of nanoparticles. In animals treated with Fe nanoparticles (600 µg per mouse), the relaxation time substantially decreased in the liver (3418 ± 1534 µs (control) versus 228 ± 67 µs), the spleen (2170 ± 728 µs versus 299 ± 97 µs), and the lungs (663 ± 101 µs versus 413 ± 99 µs). The change in transverse relaxation was dependent on the number and composition of the nanoparticles. By pixel-wise curve fitting, T2 * maps were calculated showing nanoparticle distribution. In conclusion, UTE sequences may be used to assess and quantify nanoparticle distribution in tissues exhibiting ultrafast signal decay in MRI.


Assuntos
Ferro , Nanopartículas , Animais , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL
6.
ACS Nano ; 15(2): 3330-3348, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33528985

RESUMO

Peritoneal metastasis (PM) is considered as the terminal stage of metastatic colon cancer, with still poor median survival rate even with the best recent chemotherapy treatment. The current PM treatment combines cytoreductive surgery, which consists of resecting all macroscopic tumors, with hyperthermic intraperitoneal chemotherapy (HIPEC), which uses mild hyperthermia to boost the diffusion and cytotoxic effect of chemotherapeutic drugs. As HIPEC is performed via a closed circulation of a hot liquid containing chemotherapy, it induces uncontrolled heating and drug distribution in the whole peritoneal cavity with important off-site toxicity and a high level of morbidity. Here, we propose a safer precision strategy using near-infrared (NIR) photoactivated gold nanoparticles (AuNPs) coupled to the chemotherapeutic drug 5-fluorouracil (5-FU) to enable a spatial and temporal control of mild chemo-hyperthermia targeted to the tumor nodules within the peritoneal cavity. Both the 16 nm AuNPs and the corresponding complex with 5-FU (AuNP-5-FU) were shown as efficient NIR photothermal agents in the microenvironment of subcutaneous colon tumors as well as PM in syngeneic mice. Noteworthy, NIR photothermia provided additional antitumor effects to 5-FU treatment. A single intraperitoneal administration of AuNP-5-FU resulted in their preferential accumulation in tumor nodules and peritoneal macrophages, allowing light-induced selective hyperthermia, extended tumor necrosis, and activation of a pro-inflammatory immune response while leaving healthy tissues without any damage. From a translational standpoint, the combined and tumor-targeted photothermal and chemotherapy mediated by the AuNP-drug complex has the potential to overcome the current off-target toxicity of HIPEC in clinical practice.


Assuntos
Neoplasias do Colo , Hipertermia Induzida , Nanopartículas Metálicas , Neoplasias Peritoneais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias do Colo/tratamento farmacológico , Terapia Combinada , Fluoruracila/uso terapêutico , Ouro/uso terapêutico , Hipertermia , Camundongos , Neoplasias Peritoneais/tratamento farmacológico , Microambiente Tumoral
7.
Nanoscale ; 12(42): 21832-21849, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33104150

RESUMO

Cellular endocytosis and intracellular trafficking of nanoparticles induce dynamic rearrangements that profoundly modify the physical properties of nanoparticle and govern their biological outcomes when activated by external fields. The precise structure, organization, distribution, and density of gold nanoparticles (AuNPs) confined within intracellular compartments such as lysosomes have not been studied comprehensively, hampering the derivation of predictive models of their therapeutic activity within the cells of interest. By using transmission electron microscopy and small-angle X-ray scattering, we have determined that canonical spherical citrate-coated AuNPs in the 3-30 nm size range form fractal clusters in endolysosomes of macrophages, endothelial cells, and colon cancer cells. Statistical analysis revealed that the cluster size and endolysosome size are correlated but do not depend on the size of AuNPs unless larger preformed aggregates of AuNPs are internalized. Smaller AuNPs are confined in greater numbers in loose aggregates covering a higher fraction of the endolysosomes compared to the largest AuNPs. The fractal dimensions of intracellular clusters increased with the particle size, regardless of the cell type. We thus analyzed how these intracellular structure parameters of AuNPs affect their optical absorption and photothermal properties. We observed that a 2nd plasmon resonance band was shifted to the near-infrared region when the nanoparticle size and fractal dimensions of the intracellular cluster increased. This phenomenon of intracellular plasmon coupling is not directly correlated to the size of the intralysosomal cluster or the number of AuNPs per cluster but rather to the compacity of the cluster and the size of the individual AuNPs. The intracellular plasmon-coupling phenomenon translates to an efficient heating efficiency with the excitation of the three cell types at 808 nm, transforming the NIR-transparent canonical AuNPs with sizes below 30 nm into NIR-absorbing clusters in the tumor microenvironment. Harnessing the spontaneous clustering of spherical AuNPs by cells might be a more valuable strategy for theranostic purposes than deploying complex engineering to derive NIR-absorbent nanostructures out of their environment. Our paper sheds light on AuNP intracellular reorganization and proposes a general method to link their intracellular fates to their in situ physical properties exploited in medical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Endocitose , Células Endoteliais , Fractais , Tamanho da Partícula
8.
Proc Natl Acad Sci U S A ; 117(37): 22639-22648, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900936

RESUMO

Despite an abundant literature on gold nanoparticles use for biomedicine, only a few of the gold-based nanodevices are currently tested in clinical trials, and none of them are approved by health agencies. Conversely, ionic gold has been used for decades to treat human rheumatoid arthritis and benefits from 70-y hindsight on medical use. With a view to open up new perspectives in gold nanoparticles research and medical use, we revisit here the literature on therapeutic gold salts. We first summarize the literature on gold salt pharmacokinetics, therapeutic effects, adverse reactions, and the present repurposing of these ancient drugs. Owing to these readings, we evidence the existence of a common metabolism of gold nanoparticles and gold ions and propose to use gold salts as a "shortcut" to assess the long-term effects of gold nanoparticles, such as their fate and toxicity, which remain challenging questions nowadays. Moreover, one of gold salts side effects (i.e., a blue discoloration of the skin exposed to light) leads us to propose a strategy to biosynthesize large gold nanoparticles from gold salts using light irradiation. These hypotheses, which will be further investigated in the near future, open up new avenues in the field of ionic gold and gold nanoparticles-based therapies.


Assuntos
Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanomedicina/tendências , Artrite Reumatoide/tratamento farmacológico , Ouro/efeitos adversos , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanomedicina/métodos
9.
Proc Natl Acad Sci U S A ; 117(1): 103-113, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852822

RESUMO

Gold nanoparticles are used in an expanding spectrum of biomedical applications. However, little is known about their long-term fate in the organism as it is generally admitted that the inertness of gold nanoparticles prevents their biodegradation. In this work, the biotransformations of gold nanoparticles captured by primary fibroblasts were monitored during up to 6 mo. The combination of electron microscopy imaging and transcriptomics study reveals an unexpected 2-step process of biotransformation. First, there is the degradation of gold nanoparticles, with faster disappearance of the smallest size. This degradation is mediated by NADPH oxidase that produces highly oxidizing reactive oxygen species in the lysosome combined with a cell-protective expression of the nuclear factor, erythroid 2. Second, a gold recrystallization process generates biomineralized nanostructures consisting of 2.5-nm crystalline particles self-assembled into nanoleaves. Metallothioneins are strongly suspected to participate in buildings blocks biomineralization that self-assembles in a process that could be affected by a chelating agent. These degradation products are similar to aurosomes structures revealed 50 y ago in vivo after gold salt therapy. Overall, we bring to light steps in the lifecycle of gold nanoparticles in which cellular pathways are partially shared with ionic gold, revealing a common gold metabolism.


Assuntos
Biodegradação Ambiental , Biomineralização/fisiologia , Citoplasma/metabolismo , Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas/química , Biomineralização/genética , Biotransformação/genética , Biotransformação/fisiologia , Linhagem Celular , Fibroblastos , Expressão Gênica , Ouro/farmacologia , Humanos , Imageamento Tridimensional , Inativação Metabólica , Lisossomos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio , Pele , Transcriptoma
10.
Nanoscale ; 11(7): 3344-3359, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30724952

RESUMO

Gold nanoparticles have been thoroughly used in designing thermal ablative therapies and in photoacoustic imaging in cancer treatment owing to their unique and tunable plasmonic properties. While the plasmonic properties highly depend on the size and structure, controllable aggregation of gold nanoparticles can trigger a plasmonic coupling of adjacent electronic clouds, henceforth leading to an increase of light absorption within the near-infrared (NIR) window. Polymer-engraftment of gold nanoparticles has been investigated to achieve the plasmonic coupling phenomenon, but complex chemical steps are often needed to accomplish a biomedically relevant product. An appealing and controllable manner of achieving polymer-based plasmon coupling is a template-assisted Au+3 reduction that ensures in situ gold reduction and coalescence. Among the polymers exploited as reducing agents are polyethyleneimines (PEI). In this study, we addressed the PEI-assisted synthesis of gold nanoparticles and their further aggregation to obtain fractal NIR-absorbent plasmonic nanoaggregates for photothermal therapy and photoacoustic imaging of colorectal cancer. PEI-assisted Au+3 reduction was followed up by UV-visible light absorption, small-angle X-ray scattering (SAXS), and photo-thermal conversion. The reaction kinetics, stability, and the photothermal plasmonic properties of the as-synthesized nanocomposites tightly depended on the PEI : Au ratio. We defined a PEI-Au ratio range (2.5-5) for the one-pot synthesis of gold nanoparticles that self-arrange into fractal nanoaggregates with demonstrated photo-thermal therapeutic and imaging efficiency both in vitro and in vivo in a colorectal carcinoma (CRC) animal model.


Assuntos
Neoplasias Colorretais/terapia , Ouro , Hipertermia Induzida , Nanocompostos , Fototerapia , Polietilenoimina , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ouro/química , Ouro/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Nanocompostos/química , Nanocompostos/uso terapêutico , Polietilenoimina/química , Polietilenoimina/farmacologia
11.
Biomater Sci ; 7(1): 389-408, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30484789

RESUMO

Gold nanoparticles (AuNP) have been thoroughly studied as multifunctional theranosis agents for cell imaging and cancer therapy as well as sensors due to their tunable physical and chemical properties. Although AuNP have proved to be safe in a wide concentration range, yet other important biological effects can arise in the sublethal window of treatment. This is especially pivotal to understand how AuNP can affect cell biology when labeling steps are needed for cell tracking in vivo, as nanoparticle loading can affect cell migratory/invasion ability, a function mediated by filamentous actin-rich nanometric structures collectively called adhesomes. It is noteworthy that, although numerous research studies have addressed the cell response to AuNP loading, yet none of them focuses on adhesome dynamics as a target of intracellular pathways affected by AuNP. We intend to study the collective dynamics of adhesive F-actin rich structures upon AuNP treatment as an approach to understand the complex AuNP-triggered modulation of migration/invasion related cellular functions. We demonstrated that citrate-coated spherical AuNP of different sizes (3, 11, 16, 30 and 40 nm) disturbed podosome-forming rosettes and the resulting extracellular matrix (ECM) degradation in a murine macrophage model depending on core size. This phenomenon was accompanied by a reduction in metalloproteinase MMP2 and an increment in metalloproteinase inhibitors, TIMP-1/2 and SerpinE1. We also found that AuNP treatment has opposite effects on focal adhesions (FA) in endothelial and mesenchymal stem cells. While endothelial cells reduced their mature FA number and ECM degradation rate upon AuNP treatment, mouse mesenchymal stem cells increased the number and size of mature FA and, therefore, the ECM degradation rate. Overall, AuNP appear to disturb adhesive structures and therefore migratory/invasive cell functions measured as ECM degradation ability, providing new insights into AuNP-cell interaction depending on cell type.


Assuntos
Ácido Cítrico/metabolismo , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Ouro/metabolismo , Nanopartículas/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Ácido Cítrico/química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ouro/química , Macrófagos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Nanopartículas/química , Tamanho da Partícula , Podossomos/metabolismo , Proteólise , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...